
Red Database
Version 2.5

Full text search

© Red Soft Corporation 2011

This document contents description of using full text search in DBMS Red Data-
base 2.5. Document is intended for users knowing with DBMS Red Database, SQL,
PSQL and Java.

www.red-soft.biz

2

Full text search
Table of contents

Table of contents
 Glossary...4
 Introduction..5
 1 Special tables of full text search...7
 2 Stored procedures of full text search..9
 3 Example of full text search use..13

3.1 Index creation..13
3.2 Removal of an index..13
3.3 Addition fields to an index..13
3.4 MIME type of a document..14
3.5 Removal fields from an index..14
3.6 Full text search system meta data update...14
3.7 Reindexation..15
3.8 Search...15
3.9 Search query syntax..16

3.9.1 OR Operator..16
3.9.2 AND operator...16
3.9.3 “+” operator..17
3.9.4 NOT operator...17
3.9.5 “-” operator...17
3.9.6 Boolean operators grouping...17
3.9.7 Escaping special characters...17

3

REDSOFT

Full text search
Glossary

Glossary
Daemon - the process working in a background mode without direct interaction
with the user.

Index - the object created by Lucene system based on analysis of the docu-
ment contents. Index is necessary for the search realization.

Indexation – update index.

Metadata - “data about data”. Set of system objects (tables, triggers etc.).

Morphological search - search with the morphology control (all possible forms
of a word).

Fuzzy Searches - allows to find the demanded information if spelling errors in
the document or in query are present.

Full text search (FTS) - search document in a database of texts on the basis of
of these documents contents, and also set of methods of optimization of this
process.

Collation - The logical ordering of character or wide-character strings according
to defined precedence rules. These rules identify a collation sequence between
the collating elements, and such additional rules that can be used to order
strings consisting of multiple collating elements.

Search term - the term which is search on full coincidence. Lucene supports
simple and phrases. Simple terms consist of one word, phrases consist of sev-
eral terms surrounded by double quotes.

Search phrase - the initial information for search by using search system. The
search query is consists of a set of terms and operators.

The MIME-format - a document format proceeding from which rules of extrac-
tion of data from the document are defined at indexation.

Lucene - freely extended library for high-speed full text search.

RDB$DB_KEY - it is a "record number". It can be used as the unique identifier
of record, as well as primary key. However rdb$db_key can vary during the
work. Physically it represents table number, number of page and displacement
on record (and not on the concrete version, and in general on a package of ver-
sions of this record if they are).

4

REDSOFT

Full text search
Introduction

Introduction
«Red Database» 2.5 provides full text search in a databases. Full text search is

based on is free-extended library Lucene. This library contains indexing and search
functions, access to these functions is realized through API Lucene.

General features of FTS is:
• fuzzy search;

• morphological search;

• search on several objects in a database (search in several columns and tables).

Search can be carried out on text fields (char, varchar), and also on binary and
text BLOB-fields. Thus binary type BLOB-fields can contain documents of
following types:

• *.pdf (Acrobat);
• *.doc (MS Word);
• *.xls (MS Excel);
• *.ppt (MS PowerPoint);

• *.rtf;
• *.htm, *.html;
• *.odt (Open Office Writer).

«Red Database» 2.5 full text search system using Lucene written in Java,
therefore for use this feature it is necessary to establish JDK version 1.6 or
higher. Adjustment of parameters of interaction of a «Red Database» server
and Java virtual machine is carried out by configuration file jvm.conf which is
located in the root directory of a Red Database server installation.

In this file symbol «#» is used for a designation of comments. The text following
a symbol «#», till the end of a line is the comment. It is necessary to adjust following
parameters in a file:
● full path to the virtual machine;

● path to java-libraries.

The full path to the virtual machine is specified in the first uncommented line of
file. Path to virtual machine also may be specified as a value of environment variable:
C:\Java1_6\jre\bin\client\jvm.dll #full path to jvm
<jvm_from_JAVA_HOME> #environment variable name

The path to Java-libraries with all functions of full text search is set by means of
parameter -cp (abbr. from class path). By default a server load *.jar files located only in
a directory java_lib, relative a root directory of a server. This parameter allows to
specify additional *.jar files which will be load additional to *.jar files from a java_lib
directory. Names of jar-files are listed in one line, as a divider for Windows systems is
used the symbol «;», for Unix systems and a symbol is used the symbol «:» :
-cp java_lib/commons-beanutils-
1.6.1.jar;java_lib/commons-collections-2.1.jar

For using full text search feature presence of following Java-libraries is
necessary:

5

REDSOFT

Full text search
Introduction

● fb-lu.jar

● jaybird-esp-2.1.6.jar

● jaybird-full-2.1.6.jar

● lius.jar

● lucene-highlighter-2.1.0.jar

● lucene-analyzers-2.1.0.jar

● lucene-highlighter-2.1.0.jar

● MimeType.jar.
These libraries should be placed in subdirectory java-lib or paths to them should be spe-

cified in parameter -cp in a configuration file jvm.conf.

6

REDSOFT

Full text search
Special tables of full text search

1 Special tables of full text search
For using full text search feature a database should be all necessary special ob-

jects. For automatic creation of these objects it is necessary to specify path to an initial-
ization script as a value of parameter InitScript in a configuration file of a server. Then
this script will be carried out at creation of each new database. By default the name of
a initialization script is init.sql, it is located in the root directory of a server. For example:
InitScript = init.sql

There are four special tables used in full text search:
Table 1.1 - Full text search special tables

Table Description
FTS$INDICES Index meta data
FTS$INDEX_SEGMENTS Meta data of fields entering into an index
FTS$POOL RDB$DB_KEY value for changed and still not reindexed fields
FTS$LUCENE_FILE_SYSTEM Emulation of file system for an index data storage

Metadata of indexes are stored in special table FTS$INDICES. The description
of FTS$INDICES special table is resulted below in table 1.2:

Table 1.2 - The special table FTS$INDICES structure
Field name Field type Description

FTS$INDEX_NAME CHAR(31) CHARAC-
TER SET
UNICODE_FSS

Index name

FTS$STORE BLOB SUB_TYPE 1
SEGMENT SIZE 80
CHARACTER SET
UNICODE_FSS

The description where the index is stored.
Can be NULL, in this case the index will
be stored in table
FTS$LUCENE_FILE_SYSTEM. Value by
default NULL. If a preset value “file”
indexes will be stored in file system

FTS$DESCRIPTION BLOB SUB_TYPE 1
SEGMENT SIZE 80
CHARACTER SET
UNICODE_FSS

Comment on index

FTS$INDEX_STATUS CHAR(1) The index status. This field can accept
following values:
‘ I ’ inactive - an index is inactive;
‘ N ’ new - the index is created, full
reindexing is required;
‘ U ’ needs meta data update - change of
meta data, triggers etc. is required;
‘ D ’ drop - the index is noted to removal;
‘ C ’ complete - all changes for an index in
meta data are applied and it is indexed

Data about structure (segments) of indexes – meta data of the fields entering
into an index are stored in the table $INDEX_SEGMENTS. The description of FTS$IN-
DEX_SEGMENT special table is resulted below in table 1.3:

Table 1.3 - The special table FTS$INDEX_SEGMENTS structure
Field name Field type Description

FTS$INDEX_NAME CHAR(31)
CHARACTER SET
UNICODE_FSS

Index name

FTS$RELATION_NAME CHAR(31)
CHARACTER SET
UNICODE_FSS

Indexed table

7

REDSOFT

Full text search
Special tables of full text search

Field name Field type Description
FTS$FIELD_NAME CHAR(31)

CHARACTER SET
UNICODE_FSS

Indexed field

FTS$TRIGGER_NAME CHAR(31) CHARAC-
TER SET
UNICODE_FSS

Name of the trigger which will insert
data into table FTS$POOL, after
change of data (see below)

FTS$ANALIZER CHAR(255)
CHARACTER SET
UNICODE_FSS

Analyzer name

FTS$MIME_TYPE CHAR(127) CHAR-
ACTER SET UNI-
CODE_FSS

Name of a MIME format of the document
stored in the indexed field. It is used if
documents of one type are stored in the
indexed field1

FTS$MIME_FIELD_NAME CHAR(31)
CHARACTER SET
UNICODE_FSS

Field name in which MIME format
of a document is stored. It is used if
documents of different type are stored in
the indexed field

Table FTS$POOL contains values RDB$DB_KEY for changed, but still not in-
dexed records. The structure of FTS$POOL table is resulted below in table 1.4.

Table 1.4 - The special table FTS$POOL structure
Field name Field type Description

FTS$DB_KEY CHAR(8)
CHARACTER SET
OCTETS

RDB$DB_KEY of record which
has been added, changed or
removed

Table FTS$LUCENE_FILE_SYSTEM is necessary for an index data storage. In-
dex data loads from an external files into the FTS$LUCENE_FILE_SYSTEM table into
FTS$FILE_BODY field. The structure of FTS$LUCENE_FILE_SYSTEM table is resul-
ted below in table 1.5.

Table 1.5 - The special table FTS$ LUCENE_FILE_SYSTEM structure
Field name Field type Description

FTS$INDEX_NAME CHAR(31)
CHARACTER SET
UNICODE_FSS

Index name

FTS$FILE_NAME VARCHAR(255)
CHARACTER SET
UNICODE_FSS

External file name

FTS$LAST_MODIFY_TIME TIMESTAMP Time of last change of a file
FTS$FILE_BODY BLOB SUB_TYPE 0

SEGMENT SIZE
1024

File contents

1 Avaliable values of field FTS$MIME_TYPE are resulted in the table 2.3.

8

REDSOFT

Full text search
Stored procedures of full text search

2 Stored procedures of full text search
Stored procedures using in full text search are listed below:

● FTS$CREATE_INDEX;

● FTS$ADD_FIELD_TO_INDEX;

● FTS$APPLY_METADATA_CHANGES;

● FTS$REINDEX;

● FTS$FULL_REINDEX;

● FTS$STARTDAEMON;

● FTS$SEARCH;

● FTS$DROP_FIELD_FROM_INDEX;

● FTS$DROP_INDEX.

The FTS$CREATE_INDEX procedure is used for index creating:
Table 2.1 - Input parameters of procedure FTS$CREATE_INDEX

Parameter name Parameter type Description
FTS$INDEX_NAME CHAR(31) CHARACTER

SET UNICODE_FSS
Index name

FTS$STORE BLOB SUB_TYPE 1
SEGMENT SIZE 80
CHARACTER SET
UNICODE_FSS

The description where the index is
stored. Can be NULL then the index
will be stored in table FTS $
LUCENE_FILE_SYSTEM. Value by
default is NULL. If a value is “file”
indexes will be stored in the file system

FTS$DESCRIPTION BLOB SUB_TYPE 1
SEGMENT SIZE 80
CHARACTER SET
UNICODE_FSS

Comments on index. Default value is
NULL.

Procedure FTS$ADD_FILED_TO_INDEX adds an indexed field into an index.
Input parameters of procedure FTS$ADD_FILED_TO_INDEX are resulted below in the
table 2.2.

Table 2.2 - Input parameters of procedure FTS$ADD_FILED_TO_INDEX
Parameter name Parameter type Description

FTS$INDEX_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Index name

FTS$RELATION_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Indexed table

FTS$FIELD_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Индексируемое поле.

FTS$ANALIZER CHAR(255)
CHARACTER SET
UNICODE_FSS

 Analyzer name. Can accept value
NULL value, in this case analyzer
Standard (English) analyzer will be
using. Default value is NULL.2

FTS$MIME_TYPE CHAR(127)
CHARACTER SET
UNICODE_FSS

The MIME type specifies, for what type
of document will creates index. Can
accept value NULL. Accessible MIME-
types of documents are resulted in

2 Available values of names of analyzers are resulted in the table 2.4.

9

REDSOFT

Full text search
Stored procedures of full text search

Parameter name Parameter type Description
table 2.3

FTS$MIME_FIELD_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Name of a field which will define MIME
format of documents. Can accept value
NULL.

Possible combinations of input parameters are listed below:
● If value of parameters FTS$MIME_TYPE and FTS$MIME_FIELD_NAME is

NULL the index will creates not for documents.

● If value of parameter FTS$MIME_TYPE is not NULL, and value of parameter
FTS$MIME_FIELD_NAME is NULL the index will creates for documents. In
this case, value of parameter FTS$MIME_TYPE, defines one MIME format for
all documents stored in the added field.

● If value of parameter FTS$MIME_FIELD_NAME is not NULL, and parameter
FTS$MIME_TYPE is NULL the index will creates for documents. In this case
MIME format of the document is set for each record by value stored in the
additional field which name is specified as value of parameter
FTS$MIME_FIELD_NAME.

Table 2.3 - Accessible MIME-types of documents
Document type Mime type

PDF application/pdf
Microsoft Excel application/vnd.ms-excel
Microsoft Word application/msword
Microsoft PowerPoint application/vnd.ms-powerpoint
RTF application/rtf
Open Office Writer (ODT) application/vnd.oasis.opendocument.text
HTML text/html

Value of input parametre FTS$ANALIZER defines, what type of the analyzer will
be used at indexation of an added field:

Table 2.4 - Correspondence names of analyzers and languages
Analyzer name Language

English English
Standard English
Russian Russian
German German
French French
Czech Czech
Brazilian Brazilian
Chinese Chinese
Dutch Dutch
Greek Greek
CJK Chinese, Japanese, and Korean

Attention! The correctness of results of search directly depends on type
of the chosen analyzer.

For applying changes of meta data it is necessary to execute
FTS$APPLAY_METADATA_CHANGES procedure. Input and output parameters at
procedure are absent. It is necessary to execute given procedure after change of
structure of an index (addition or removal of fields in an index).
Special procedure FTS$REINDEX makes full (on all records, with replacement before
an existing index) reindexation of the specified index. Procedure has one entrance
parameter - an index name (the Table. 2.5).

Table 2.5 - Input parameter of FTS$REINDEX procedure
Parameter name Parameter type Description

10

REDSOFT

Full text search
Stored procedures of full text search

FTS$INDEX_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Index name

To execute full reindexation for all indexes in a DB, it is necessary to execute
procedure FTS$FULL_REINDEX procedure. This procedure has no input and output
parameters.

That at change of indexed data sets reindexation executes automatically pos-
sible to start reindexation daemon. To start daemon it is necessary to execute proced-
ure FTS$STARTDAEMON. Daemon carries out continuous (everyone 0,1) monitoring
of table FTS$POOL and reindexes changed records then records leave from
FTS$POOL. Procedure FTS$STARTDAEMON has neither input no output parameters.

For extraction of data from an index procedure FTS$SEARCH is used. Input
parameters of procedure FTS$SEARCH are resulted in table 2.6. Required input para-
meters are an index name on which search will be carried out, and a search query.

Table 2.6 - Input parameters of FTS$SEARCH procedure
Parameter type Parameter type Description

FTS$INDEX_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Index name

FTS$RELATION_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Name of the indexed table. Can accept
value NULL then search will go under
all tables entering into an index

FTS$FILTER VARCHAR(4000)
CHARACTER SET
UNICODE_FSS

The filter, on which search will be
carried out (See
http://lucene.apache.org/java/2_3_1
/queryparsersyntax.html).

FRAGMENT_SIZE INTEGER The parameter setting displayed
quantity of symbols of a
fragment of the search result.
The value 50 is used by default.

Procedure FTS$SEARCH has following target parameters: value
RDB$DB_KEY for the found records, value of relevance of search result, a table name
in which data was found. The description of output parameters is resulted in the 2.7.

Table 2.7 - Output parameters of FTS$SEARCH procedure
Parameter name Parameter type Description

RELATION VARCHAR(512) Table, witch founded data is stores
ROW_ID CHAR(8) CHARACTER

SET OCTETS
RDB$DB_KEY value for search result

SCOPE DOUBLE PRESITION Relevance of search result
HIGHLIGHT VARCHAR(512) The fragment of the search result. The

found line consists in tags
Procedure FTS$DROP_FILED_FROM_INDEX is used for removal of an in-

dexed field from an index. Input parameters are resulted in the table 2.8
Table 2.8 - Input parameters of FTS$DROP_FILED_FROM_INDEX procedure

Parameter name Parameter type Description
FTS$INDEX_NAME CHAR(31) CHARACTER

SET UNICODE_FSS
Index name

FTS$RELATION_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Indexed table

FTS$FIELD_NAME CHAR(31) CHARACTER
SET UNICODE_FSS

Indexed field

For removal of an index from full text search system procedure FTS$DROP_IN-
DEX is used. The description of input parameter of procedure is resulted in the table
2.9.

11

REDSOFT

http://lucene.apache.org/java/2_3_1/queryparsersyntax.html
http://lucene.apache.org/java/2_3_1/queryparsersyntax.html

Full text search
Stored procedures of full text search

Table 2.9 - Input parameters of FTS$DROP_FILED_FROM_INDEX procedure
Parameter name Parameter type Description

FTS$INDEX_NAME CHARCHARACTER SET
UNICODE_FSS

Index name

12

REDSOFT

Full text search
Example of full text search use

3 Example of full text search use
Generally it is possible to present rules of use of system of text-through search
as follows:

1. Index creation;

2. Addition/removal of fields in an index;

3. Full text search system meta data update;

4. Reindexation;

5. Search;

6. Removal of index (if it is necessary).

3.1 Index creation
At first it is necessary to create an index. For this purpose it is necessary to ex-

ecute FTS$CREATE_INDEX procedure. Obligatory input parameter is only the index
name. The second input parameter is used to define where the index should be stored.
Can be NULL then the index will be stored in table FTS $ LUCENE_FILE_SYSTEM.
Value by default is NULL. If a value is “file” indexes will be stored in the file system.

Example of creation of an index:
EXECUTE PROСEDURE FTS$CREATE_INDEX ('SIMPLE_INDEX',
'file', 'Simple index for FTS')

At create index record in table FTS$INDICES will be added. Value of
FTS$INDEX_STATUS field is equal ‘ N ’, that means, that the index is just created,
demands full reindexation.

3.2 Removal of an index
For index removal FTS$DROP_INDEX procedure is used. It has one obligatory

input parameter - an index name .
Example of removal of an index:

EXECUTE PROCEDURE FTS$DROP_INDEX ('SIMPLE_INDEX');
At index removal also leave:

● The record from FTS$INDICES table related with an index;

● Records form FTS$INDEX_SEGMENTS table related with an index;

● Records from FTS$LUCENE_FILE_SYSTEM table related with an index;

● Temporary files relate with an index.

3.3 Addition fields to an index
After the index is created, it is possible to add fields from database tables in it.

For addition field in an index FTS$ADD_FIELD_TO_INDEX procedure is used. It has
six input parameters. Procedure FTS$ADD_FIELD_TO_INDEX has four obligatory in-
put parameters: index name, table name, field name, analyzer name. To define analyz-

13

REDSOFT

Full text search
Example of full text search use

er name parameter FTS$ANALIZER is used. It can accept value NULL value, in this
case analyzer Standard (English) analyzer will be using. Default value is NULL. Ac-
cessible types of analyzer are resulted in table 2.4.

Last two parameters of procedure FTS$ADD_FIELD_TO_INDEX procedure
also are used to specify, for what type of document will creates index. To define one
MIME format for all documents stored in the added field parameter FTS$MIME_TYPE
is used. If it is necessary to define MIME format of the document for each record para-
meter FTS$MIME_FIELD_NAME. Accessible MIME-types of documents are resulted in
table 2.3

Example of addition of a field in an index (the index is created not for docu-
ments):
EXECUTE PROСEDURE FTS$ADD_FIELD_TO_INDEX
('SIMPLE_INDEX', 'TABLE1', 'FIELD1',NULL ,NULL, NULL)

Example of addition of a field in an index (the index is created for documents of
one type)::
EXECUTE PROСEDURE FTS$ADD_FIELD_TO_INDEX
('SIMPLE_INDEX’, 'TABLE1', 'FIELD1', 'English',
'application/pdf', NULL)

After addition field in an index in table FTS$INDEX_SEGMENTS there should
be a corresponding record.

3.4 MIME type of a document
If the index is created for documents it is required to specify MIME type of a

document at addition of a field in an index.
«Red Database» full text search system it is possible to use one of seven

MIME-formats. Correspondence of MIME-types of documents to the values can spe-
cified in the field FTS$MIME_TYPE, is resulted in table 2.3.

3.5 Removal fields from an index
To remove fields from an index in FTS$DROP_FIELD_FROM_INDEX
procedure is used. Procedure has three obligatory input parameters: an index
name from which the field removes; a name of the table which contains this
field; a name of a deleted field. The example of removal of a field from an index
is resulted below:
EXECUTE PROCEDURE FTS$DROP_FIELD_FROM_INDEX
('SIMPLE_INDEX', 'TABLE1', 'FIELD1')

After the field was removed from index relation record from FTS$INDEX_SEGMENTS
table should be removed.

3.6 Full text search system meta data update
After change of index structure, in particular after removal of a field from it , it is
necessary to update the meta data of full text search system. Procedure
FTS$APPLY_METADATA_CHANGES is intended for this purpose. Procedure
FTS$APPLY_METADATA_CHANGES has no neither input, nor output parameters. The
example or use is resulted below:

14

REDSOFT

Full text search
Example of full text search use

EXECUTE PROCEDURE FTS$APPLY_METADATA_CHANGES
Procedure FTS$APPLY_METADATA_CHANGES removes not used triggers which are
created at addition of fields in an index.

3.7 Reindexation
To update index data it is necessary to execute reindexation. Reindexation can

be executed a call of one of three procedures:
● FTS$FULL_REINDEX

● FTS$REINDEX

● FTS$STARTDAEMON

Procedure FTS$FULL_REINDEX carries out full reindexation for all indexes in
full text search system. Procedure FTS$FULL_REINDEX has neither input no
output parameters. An example of use:
EXECUTE PROСEDURE FTS$FULL_REINDEX

To execute reindexation of one index FTS$REINDEX procedure is used. It has
one obligatory input parameter - index name, for example:
EXECUTE PROСEDURE FTS$REINDEX ('SIMPLE_INDEX')

Procedure FTS$STARTDAEMON starts reindexation daemon. Daemon carries out
monitoring of table FTS$POOL each 0,1 seconds. Procedure FTS$STARTDAEMON
has neither input no output parameters. To start daemon it is necessary to execute
procedure FTS$STARTDAEMON, for example:
EXECUTE PROСEDURE FTS$STARTDAEMON

3.8 Search
For extraction of data from an index FTS$SEARCH procedure is used. Proced-

ure has following input parameters: index name, table name and search query. Obligat-
ory input parameters are index name on which search will be carried out, and a search
query. The second input parameter is name of the indexed table can accept NULL
value , in this case search is carried out under all tables entering into an index. If the
name of the indexed table is specified search will be carried out only under this table.

Output parameters of procedure are table name in which data are found,
RDB$DB_KEY value of the found records, search result relevance, fragment of result
of search.

Example of search of a word test in index SIMPLE_INDEX and only under
table TABLE1, length of a fragment of result of search it is equal 100 symbols:
SELECT * from FTS$SEARCH ('SIMPLE_INDEX', 'TABLE1',
'test', 100);

Let's admit, that by search has been found two records, in this case result of
search for example resulted above can look like:

ROW_ID SCOPE RELATION HIGHLIGHT
85000000E4010000 0,298344343900681 TABLE1 test text
85000000E5010000 0,298344343900681 TABLE1 test text

ROW_ID stores RDB$DB_KEY value of the found record; SCOPE stores con-

15

REDSOFT

Full text search
Example of full text search use

formity of the found record to a search condition; RELATION stores table name in
which record has been found; HIGHLIGHT stores the text fragment containing a line
that satisfy to search conditions.

 Using RDB$DB_KEY value it is possible to select found records from corres-
ponding tables, for example:
SELECT B.* from FTS$SEARCH ('SIMPLE_INDEX', 'TABLE1',
'test') as A LEFT JOIN TABLE1 as B on A.FTS$DB_KEY =
B.RDB$DB_KEY

The result of executing such query will be:
F_ID F_VCHAR

3 test text
6 test text

3.9 Search query syntax
Use in terms of symbols “?” And “*” allows to carry out wildcard search. In this
case a symbol “?” replaces one any symbol, but symbol “*” replaces any
quantity of symbols, for example:
te?t test* tes*t

Attention! The search query cannot beguns with symbols “?” or “*”.

To do a fuzzy search use the tilde, "~", symbol at the end of a single word term.
For example to search for a term similar in spelling to "roam" use the fuzzy search.

Lucene allows to change the significance value of terms in a search query. For
example, you search for a phrase “Hello world” and want, that the word "world" was
more significant. The importance of a term in a search query can be increased, using a
symbol “^” after which the significance value is underlined. In a following example the
importance of a word “world” is four times more than importance of a word “Hello”
which is by default equal to one.
"Hello world^4"

Boolean operators allow terms to be combined through logic operators. Lucene
supports AND, "+", OR, NOT and "-" as Boolean operators.

Attention! Boolean operators should be specified by all capital letters.

3.9.1 OR Operator
The OR operator is the default conjunction operator. It means that if there is no

boolean operator between two terms in search query operator OR is used. Thus the
search system finds the document if one of specified in a search query term is present
in it. An alternative designation of operator OR is symbol “||”.
"Hello world" "world"

Equal to:
"Hello world" OR "world"

3.9.2 AND operator
AND Operator specifies that booth terms united by the operator should exist at

the text. An alternative designation of the operator is symbol “&&””, for example:

16

REDSOFT

Full text search
Example of full text search use

"Hello" AND "world"

3.9.3 “+” operator
The operator “+” specifies that the word following it should exists at the text necessarily.
For example, to search records which must contain a word "hello" and can contain a
word “world”, the search query can look like:
+Hello world

3.9.4 NOT operator
NOT operator allows to exclude a term following it from search results. Instead of word
NOT the symbol can be used “!”. For example, to search records which must contain a
word "hello" and not contain a word "world", the search phrase can look like:
"Hello" NOT "world"

Attention! NOT operator can not be used with one term only, search with
such condition will not return results, for example:

NOT 'world'

3.9.5 “-” operator
This operator is similar to NOT operator. Example of use:

"Hello" -"world"

3.9.6 Boolean operators grouping
The Lucene query parser supports grouping of boolean operators. Let's admit, it is
necessary to find either a word "word" or a word "dolly" and the word "hello" is
obligatory, for this purpose used such search query:
"Hello"&&("world"||"dolly")

3.9.7 Escaping special characters
Lucene supports escaping special characters that are part of the query syntax.

To escape these character use symbol “\” before the character
The current list special characters are:

+ - && || ! () { } [] ^ " ~ * ? : \
For example to search for (1+1):2 use the query:

\ (1 \ +1 \) \: 2
More detailed description of syntax is located on Lucene official site:

http://lucene.apache.org/java/2_3_1/queryparsersyntax.html.

17

REDSOFT

http://lucene.apache.org/java/2_3_1/queryparsersyntax.html

	Glossary
	Introduction
	1 Special tables of full text search
	2 Stored procedures of full text search
	3 Example of full text search use
	3.1 Index creation
	3.2 Removal of an index
	3.3 Addition fields to an index
	3.4 MIME type of a document
	3.5 Removal fields from an index
	3.6 Full text search system meta data update
	3.7 Reindexation
	3.8 Search
	3.9 Search query syntax
	3.9.1 OR Operator
	3.9.2 AND operator
	3.9.3 “+” operator
	3.9.4 NOT operator
	3.9.5 “-” operator
	3.9.6 Boolean operators grouping
	3.9.7 Escaping special characters

